Experience, Explain and Expand:
Double-flipping the Learning Cycle
(in a Statistics Class)

Benjamin R. Shear (PhD student)
Daniel L. Schwartz (GSE Dean)
Graduate School of Education
WHAT’S THE CONTEXT?
EDUC 200C: Introduction to Statistical Methods in Education.

• Introductory course for PhD in Education.
 – Taught by many instructors over the years.
 – We aimed to improve student learning and engagement.

• Used our own theories on human learning to redesign the class.
 – Course is currently in its 3rd year in this form.
WHAT DID WE DO?
Not ... The STANDARD model

Tell-and-Practice Learning Cycle

Tell in class

Practice at home
Not ... The Nouveau STANDARD model

Flipped classroom Learning Cycle

Tell at home

Practice in class

Does not flip Learning Cycle
The Double-Flipped Learning Cycle

1. EXPERIENCE
 a problem for homework

2. EXPLAIN
 the solution or reason in class

3. EXPAND
 with practice at home
The Double-Flipped Learning Cycle

1. Invent a formula to describe how “spread out” these data are.

2. Students see lecture as a solution to a problem they encountered.

3. Students read text and practice canonical solution.
Secret Sauce

• Students experience the problem the theory solves.
 – For cell division:
 • How would you get rubber ducks to center of pool without touching?
 – For psychology:
 • Graph important (to you) results from a simplified classic experiment.

• In statistics:
 – How to handle different sample sizes?
 – How to compare data on different scales?
Comparing Pitching Machine Consistency

- Companies make pitching machines.
- The Certification Board of Tests and Measures (CBTM) checks the machines. It pitches several balls at a target and records where the balls land.
- Consumers want a consistency index so they can pick the right machine. A child needs a consistent machine, but a pro might want an inconsistent one.
- **Your task:** Find a way to compute a single number that describes the consistency of any given pitching machine.
 - The less consistent a machine, the larger the number should be.
 - Use the same method to assign an index to each of the six machines on the next page.
 - Email solution as an attachment to
The Grading Nightmare

A professor has a physics class with five sections that each have 10 students.

In each class, the TA makes his/her own final exam.

Students took the final exam. The graphs on the left show the score distributions.

The Grading Nightmare: Your Task

You need to invent a way to compute a fair score for determining what grade a each student in the class should get. Here are the criteria:

- It needs to rank students.
- Your procedure should be the same for each section.
- You should produce a single score for each student.
- A higher score means a higher grade.

You need to be able to rank all of these students from best to worst performance, despite having different tests. *Hint: Nobody should get the same value.*

Here are the students you care about:

- Section A: Mary got a 7.
- Section B: Enrique got a 6.
- Section C: Arafat got a 6.
- Section D: Sharia got a 5.
- Section E: Bob got a 3.

• Email your solution to with the subject “grades”
WHY DO WE DO IT?
Lectures Can Overshadow Learning

- Students learn the solution, and never learn the problem.
- They cannot recognize when to use a solution.

Creating a Time for Telling

- Experiences create a need to know.
- Explanation solves problems students have experienced.

Preparation for Future Learning

- Recoup time spent experiencing.
- Lecture goes smoother and practice is easier.
HOW TO USE THIS IN YOUR CLASS?
The Major Challenge

• Many people focusing on perfecting lectures.
 – Better to expend energy on experiences that make lectures click in.

• How to design experiences that prepare students to learn?
 – Asking students to solve end-of-chapter questions before lecture?
 – These questions are designed to improve efficiency not initial learning.

• Collaborations between disciplinary experts and learning scientists may be best approach for now.
 – We are eager to help generate tasks that can prepare students to learn from subsequent expositions. For us, it is a basic research question.
THE END